Webinars

Past Webinars

Headshot of Michael Piazza
Headshot of Daryl Good
Streamlining characterization of biomolecular binding kinetics with alto™ and openspr®

Presenters: 

Michael Piazza, PhD, Associate Director of Applications Development – Nicoya

Daryl Good, PhD, Senior Staff Customer Success Scientist – Nicoya

Livia Yuxiu, MSc, Product Manager – Nicoya

There is a growing need to streamline research workflows to get results faster and with greater throughput while minimizing effort at the bench, without compromising precision and accuracy. Equipped with user‑friendly interfaces that guide you from assay design to data analysis, our next gen SPR instruments Altoâ„¢ and OpenSPR® bring efficiency to biomolecular binding analysis.

Altoâ„¢ leverages digital microfluidics technology to automate high-throughput SPR analysis while enabling crude sample compatibility, ultra low sample volumes, and cloud-first software connection. OpenSPR® is an easy-to-use and cost effective platform with a proven track record, backed by over 300 peer-reviewed studies across research areas including immunology, oncology and infectious diseases.

Join us in a conversation with Daryl Good, Customer Success Manager, and Michael Piazza, Associate Director of Applications Development, as we delve into the applications of our Altoâ„¢ and OpenSPR® systems for streamlining biomolecular characterization, including affinity and kinetics analysis, epitope binning, library screening, and quantitation.   

What You Will Learn:

  • Overview of our technology
  • How Altoâ„¢ and OpenSPR® streamline research workflows 
  • Applications of our Alto and OpenSPR platforms for characterizing biomolecular interactions, including: affinity and kinetics analysis; epitope binning; library screening; and quantitation
Juliet Obi Headshot
Albert Serrano Headshot
Unlocking molecular determinants of virulence and transmission with surface plasmon resonance

Presenters: 

Juliet Obi, Pharmaceutical Sciences – University of Maryland, Baltimore

Albert Serrano, Biomedical Sciences – University of Central Florida

Hniang Khamh, PhD, Field Applications Scientist – Nicoya

In this webinar, we’re excited to put the spotlight on rising investigators of disease-causing pathogens. Featuring two case studies from PhD Candidates Juliet Obi and Albert Serrano, you’ll learn about the biophysical, biochemical and computational approaches they are investigating to better understand molecular determinants of virulence and pathogen transmission. 

What You Will Learn:

  • Current technologies advancing biomolecular research on infectious diseases
  • Incorporating structural and interaction studies to better understand critical virulence and transmission factors 
  • Novel studies being conducted by early investigators at UMB and UCF on viral replication and bacterial toxins
  • Advantages of quantitative binding studies with SPR for identifying and characterizing new therapeutic targets 
Detecting emerging viral variants through rapid antibody discovery and characterization

Presenters: 

Scott Dessain, MD, PhD, Founder, CSO  – OCMS Bio                   

Marko Jovic, PhD, Training and Development Manager – Nicoya

Viruses are known to be highly susceptible to mutations, often resulting in the emergence of variant strains. While some will disappear, others will persist and challenge our global healthcare system, just as we saw with the COVID-19 pandemic.

The pandemic is the most recent example of why rapid development of new detection strategies is more crucial than ever, especially when new variants demonstrate improved transmissibility or virulence. Co-presented by OCMS Bio and Nicoya Lifesciences, this webinar will present current strategies being applied in antibody discovery to accelerate the development of diagnostic tools for emerging viral variants.

Join us in a conversation with Scott Dessain (OCMS) and Marko Jovic (Nicoya), who will discuss the application of novel mAb screening technology and surface plasmon resonance (SPR) for rapid discovery and characterization of variant-specific antibodies, and will delve into the future of immunodiagnostics.

What You Will Learn:

  • Challenges of emerging viral variants
  • New strategies for viral detection
  • Accelerating antibody discovery with rapid screening and characterization
  • Emerging technologies for mAb engineering
https://nicoyalife.com/wwod_etn/
Enter the Nicosystem

Presenters: 

Soleil Grisé, Sr. Product Manager – Nicoya                     

Adam Miles, Director, Product – Nicoya

Biospecific interactions play a major role in fundamental biological processes, and the advent of label-free detection tools has greatly enhanced our ability to characterize and better understand these biological systems. Yet, our ability to automate and scale our efforts has been limited by the need for a hands-on approach when it comes to understanding and optimizing the underlying biology.

What You Will Learn:

  • The most common questions asked by scientists analyzing biomolecular interactions 
  • The use of interaction matrices to better understand and visualize your interaction systems
  • How digital microfluidics and fibre optic biosensors work together to detect interactions in real time
  • How the Nicosystem automates your assay design to take away the guesswork and scale your throughput
  • The promise of digital microfluidics for intelligent optimization and real-time decision making   
Which Biomolecular Interaction Technique is best for your Research?

Presenters: 

Michael Piazza, Ph.D, Systems Integration Manager – Nicoya

Sajni Shah, Product Marketing Associate – Nicoya

Are you spending a lot of time and resources trying to determine which biomolecular interaction technique is best-suited for your research? Are experimental time and technical complexities associated with interaction techniques major factors in your consideration?

To help you navigate the many biomolecular interaction techniques available, we’ve organized this webinar to dive into which technique is best-suited  to your specific projects.

What You Will Learn: 

  • The latest advancements in biomolecular characterization methods
  • A comprehensive overview of interaction techniques – Co-IPs, MST, ITC, BLI, and SPR
  • The advantages of using SPR/LSPR over other techniques for biomolecular characterization
  • How our affordable, reliable and low maintenance SPR platforms can help you publish faster in high impact journals
  • How novel advancements in nanotechnology and microfluidics are advancing biologics discovery programs
Characterization and Selection of Antibodies for Covid-19 Diagnostics Using SPR

Presenters: 

Soleil Grisé, Sr. Product Manager – Nicoya                     

Michael Piazza, Ph.D, Systems Integration Manager – Nicoya

Rob Burgess, Ph.D, Chief Business Officer – Sino Biological

By January 2021, just over a year after the virus was first identified, there were over 100 million cases of COVID-19 reported worldwide and several viral variants in circulation. The unprecedented nature of the pandemic has magnified the need for accelerated scientific discoveries as researchers strive to bring novel therapeutics, vaccines and diagnostic solutions to market.

What You Will Learn:

  • Versatility & Flexibility: How the robustness and sensitivity of SPR makes it ideal for a wide range of biomolecular applications
  • Comprehensive workflows: The benefits of SPR-based characterization studies for accelerating lead time on novel COVID-19 solutions
  • Maximizing performance: How to develop a highly selective and specific antibody pair with SPR to optimize COVID-19 antigen detection
  • Looking ahead: The next generation of SPR platforms advancing label-free detection to address the unmet needs of infectious disease research
Accelerating Scientific Research During COVID-19: Laboratory Automation

Presenters:

Hannah Douglas, Sales Operations Rep. – Nicoya                     

Michael Born, Inside Sales Rep. – Nicoya

Alexandra Defazio, Sales Development Rep. – Nicoya

As a result of technological innovation and desire for improved efficiency, the world is becoming increasingly automated, there’s really no question about it and research labs are no exception. Heck, Alexa is more commonly known as a virtual assistant than a human name at this point. 

Automation allows for a reduction in human error, and allows for fewer people to run more experiments efficiently. As of recently, with physical-distancing guidelines implemented as a response to the COVID-19 pandemic, reducing the number of people in the lab has become of utmost importance to keep research flowing smoothly. 

What You Will Learn:

  • The history of lab automation, including some of the events that accelerated the innovation and the first example of a fully automated lab
  • Why automation is more accessible than you think
  • Examples of automation solutions you can implement today
two female scientists looking at vials
Navigating the Post-Covid Research Landscape

Presenters:

Aaron Sato, Ph.D, Chief Scientific Officer, Biopharma & VP, Protein Engineering – Twist Bioscience                     

Tonya Zeczycki, Ph.D, Assistant Professor  – East Carolina University Brody School of Medicine

Matthew Gage, Ph.D, Associate Professor, Principal Investigator – University of Massachusetts Lowell

Thorsten Dieckmann, Ph.D, Associate Professor & Associate Chair, Graduate Studies and Research – University of Waterloo

Are you preparing to return to your lab, or are you in the middle of figuring out how to scale up your workflow? It is no question that researchers returning to the lab are facing challenges unlike ever before, as they navigate a new research landscape that continues being shaped by the COVID-19 pandemic.

Staying connected to your team, keeping up with new safety protocols, and managing uncertainty about your funding are just a few of the many challenges you are now having to overcome.

What You Will Learn:

  • Create a foolproof plan of action for your return to the lab
  • Effectively adapt to changing lab protocols and regulations
  • Stay connected with your team throughout the transition
  • Manage your budget and maximize funding opportunities
  • Be forward thinking on how the scientific community will change